Atomically thin perovskites boost for future electronics

Atomically thin perovskites boost for future electronics
Credit: National Institute for Materials Science

WPI-MANA has developed the world's highest performance dielectric nanofilms using atomically thin perovskites. This technology may revolutionize the next-generation of electronics.

This research was conducted by a WPI-MANA research group led by Principal Investigator Minoru Osada and Director Takayoshi Sasaki of WPI-MANA at NIMS. Electronic devices are getting smaller all the time, but there is a limit to how small they can get using current materials and technology. High-κ materials may be the key for developing of the future.

Minoru Osada and colleagues created high-performance dielectric nanofilms using 2-D perovskite nanosheets (Ca2Nam−3NbmO3m+1; m = 3–6) as building blocks. Perovskite oxides offer tremendous potential for controlling their rich variety of electronic properties including high-κ dielectric and ferroelectric.

The researchers demonstrated the targeted synthesis of nanofilms composed of 2-D perovskite nanosheets in a unit-cell-upon-unit-cell manner. In this unique system, perovskite nanosheets enable precise control over the thickness of the perovskite layers in increments of ~0.4 nm (one perovskite unit) by changing m, and such atomic layer engineering enhances the high-κ dielectric response and local ferroelectric instability. The m = 6 member (Ca2Na3Nb6O19) attained the highest dielectric constant, εr = ~470, ever realized in all known dielectrics in the ultrathin region of less than 10 nm.

Perovskite nanosheets are of technological importance for exploring high-κ dielectrics in 2-D materials, which have great potential in electronic applications such as memories, capacitors, and gate devices. Notably, nanosheets afforded high capacitances by relying on high-κ values at a molecular thickness. Ca2Na3Nb6O19 exhibited an unprecedented capacitance density of approximately 203 μF cm-2, which is about three orders of magnitude greater than that of currently available ceramic condensers, opening a route to ultra-scaled high-density capacitors.

These results provide a strategy for achieving 2-D high-κ dielectrics/ferroelectrics for use in ultra-scaled electronics and post-graphene technology.

More information: Bao-Wen Li et al. Atomic Layer Engineering of High-κ Ferroelectricity in 2D Perovskites, Journal of the American Chemical Society (2017). DOI: 10.1021/jacs.7b05665

Citation: Atomically thin perovskites boost for future electronics (2017, December 27) retrieved 21 June 2024 from https://phys.org/news/2017-12-atomically-thin-perovskites-boost-future.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

New multiferroic materials from building blocks

39 shares

Feedback to editors